

Software Assurance Countermeasures
in Program Protection Planning

MARCH 2014

Deputy Assistant Secretary of Defense for Systems Engineering

and Department of Defense Chief Information Officer

Washington, D.C.

Deputy Assistant Secretary of Defense for Systems Engineering (DASD(SE)) and Department of
Defense Chief Information Officer (DoD CIO). 2014. Software Assurance Countermeasures in
Program Protection Planning. Washington, D.C.: DASD(SE) and DoD CIO.

Office of Primary Responsibility:

Deputy Assistant Secretary of Defense
Systems Engineering
3030 Defense Pentagon
3C167
Washington, D.C. 20301-3030
www.acq.osd.mil/se

Distribution Statement A: Approved for public release.

Software Assurance Countermeasures in Program Protection Planning

3

Contents

Introduction ... 4

Development Process .. 6

Static Analysis .. 6

Design Inspection.. 6

Code Inspection .. 7

Common Vulnerabilities and Exposures (CVE) ... 7

Common Attack Pattern Enumeration and Classification (CAPEC) .. 9

Common Weakness Enumeration (CWE) .. 10

Penetration Test .. 12

Test Coverage ... 12

Operational System ... 13

Failover Multiple Supplier Redundancy ... 13

Fault Isolation ... 13

Least Privilege .. 13

System Element Isolation ... 13

Input Checking/Validation .. 14

Software Load Key ... 14

Development Environment ... 15

Source Code Availability .. 15

Release Testing ... 15

Generated Code Inspection ... 16

Additional Countermeasures ... 16

Acronyms .. 17

References ... 18

Software Assurance Countermeasures in Program Protection Planning

4

Introduction

Department of Defense (DoD) systems incorporate an extensive amount of software, and
therefore defense programs must conduct early planning to impose software assurance
countermeasures to counter adversarial threats that may target that software. Programs must
ensure systems are securely supplied, designed, and tested to ensure mission success and to
protect critical functions, associated components, and critical program information (CPI). Of
particular interest are protection and assurance activities undertaken during the integration and
development of commercial off-the-shelf (COTS) components; activities designed to mitigate
attacks against the operational system (the fielded system); and activities that address threats to
the development environment.

The purpose of the software assurance countermeasures section of the Program Protection
Plan (PPP) is to help programs develop a plan and statement of requirements for software
assurance early in the acquisition lifecycle and to incorporate the requirements into the request
for proposal (RFP). Programs then use that plan to track software assurance protections
throughout the acquisition. The progress toward achieving the plan is measured by actual
accomplishments/results that are reported at each of the Systems Engineering Technical Reviews
(SETR) and recorded as part of the PPP.

The Program Protection Plan (PPP) Outline and Guidance (2011) requires acquisition
programs to address software assurance responsibilities for planning and implementing program
protection countermeasures. Such countermeasures address the anticipated attacks a system may
experience by eliminating or reducing vulnerabilities. The countermeasures are selected with an
understanding of which parts of the software are the most critical to the success of the mission.
The plan includes a sample Software Assurance Countermeasures table (figure 1), which
summarizes the planned and current state of a program’s software assurance activities. The table
is also used as part of a vulnerability assessment to identify operational, developmental, design,
COTS, and software tool vulnerabilities that can be addressed by planning and implementing
software assurance countermeasures.

The table in the PPP is divided into three sections that provide different vulnerability and
countermeasure perspectives on software assurance plans and implementation:

Development Process – assurance activities conducted during the development process to
mitigate and minimize attacks (e.g., threat assessment and modeling, attack surface analysis,
architecture and design reviews, application of static and dynamic code assessment tools and
services, penetration testing, and red teaming) that the developed system is likely to face
when deployed into operation

Operational System – attack countermeasures and other assurance activities applied within
the operational environment (e.g., failover, fault isolation, encryption, application firewalls,
least privilege, and secure exception handling) to mitigate attacks against the delivered
system and software interfaces, which may include COTS, Government off-the-shelf
(GOTS), open source, and other off-the-shelf software

Introduction

Software Assurance Countermeasures in Program Protection Planning

5

Development Environment – assurance activities and controls (e.g., access controls,
configuration management, and release testing) applied to tools and activities (e.g.,

Development Process

Software (CPI, critical function
components, other software)

Static
Analysis
p/a (%)

Design
Inspect

Code
Inspect
p/a (%)

CVE
p/a (%)

CAPEC
p/a (%)

CWE
p/a (%)

Pen
Test

Test
Coverage

p/a (%)

Developmental CPI SW 100/80 Two
Levels 100/80 100/60 100/60 100/60 Yes 75/50

Developmental Critical Function
SW 100/80 Two

Levels 100/80 100/70 100/70 100/70 Yes 75/50

Other Developmental SW none One level 100/65 10/0 10/0 10/0 No 50/25

COTS CPI and Critical Function
SW Vendor SwA Vendor

SwA
Vendor

SwA 0 0 0 Yes UNK

COTS (other than CPI and Critical
Function) and NDI SW No No No 0 0 0 No UNK

Operational System

Failover
Multiple
Supplier

Redundancy
(%)

Fault
Isolation

Least
Privilege

System Element
Isolation

Input
Checking /
Validation

SW Load
Key

Developmental CPI SW 30 All all yes All All
Developmental Critical Function

SW 50 All All yes All all

Other Developmental SW none Partial none None all all

COTS (CPI and CF) and NDI SW none Partial All None Wrappers/ all all

Development Environment

SW Product Source Release
Testing

Generated
Code

Inspection
p/a (%)

C Compiler No Yes 50/20
Runtime libraries Yes Yes 70/none

Automated test system No Yes 50/none

Configuration management system No Yes NA

Database No Yes 50/none

Development Environment Access Controlled access; Cleared personnel only

FIGURE 1 – SOFTWARE ASSURANCE COUNTERMEASURES (SAMPLE)

compilers, linkers, integrated development environments, run-time libraries, and test
harnesses) used to develop and sustain software to mitigate attacks

Given the constraints of cost, schedule, and performance, fully comprehensive assessment
and testing often are not feasible. Thus software assurance planning should reflect priorities
chosen to mitigate risk and deliver mission capability with acceptable levels of assurance. The
coding language, source of code (i.e., custom, COTS, GOTS, open source), platform (i.e., web-
based, mobile, embedded, etc.) as well as the results of criticality analysis (see Defense
Acquisition Guidebook (DAG) 13.3.2.1) will be used to prioritize software assurance activities
when planning for software assurance.

Software Assurance Countermeasures in Program Protection Planning

6

Development Process

The purpose of this section of the table is to identify, set goals for, and track the assurance
activities conducted during software development and the integration of off-the-shelf
components. As appropriate to the risk of compromise and criticality of the software in question,
program managers (PM) are to analyze the development activities for:

• Potential introduction of vulnerabilities and risks based on the anticipated threat and the
attacks the threats are capable of making against the system;

• Development of a plan for the assurance process as well as the technical disciplines and
knowledge needed for Integrated Project Teams (IPT);

• How IPTs address the architecture, design, code, and implementation choices to include
the appropriate mitigations necessary to address the anticipated attacks and assure the
critical function software components; and

• Review points to track/assess the progress at the milestones in the PPP.

Not all software will require the same level of software assurance activities and mitigation
planning and implementation. In programs with millions of lines of code, there may be some
functions (perhaps a monthly reporting feature) that are less mission-critical than others (perhaps
a satellite station-keeping module). It may also be difficult to perform some types of assessment
and mitigation activities on COTS software for which the source code is not available. Note that
in such cases software-related risks still exist and may be unmitigated. The software assurance
table in the PPP recognizes these varying types of software and allows for differing
plans/implementation of assurance as needed.

Static Analysis

Programs should investigate the applicability of automated static analysis tools to review
source and/or binary copies of their software and, where advantageous, apply both static source
code and static binary analysis to assist in identifying latent weaknesses that would manifest as
operational system vulnerabilities and allow attackers to interfere, manipulate, or otherwise
suborn the system’s mission capabilities. The use of these types of tools within the development
activity (i.e., as an add-on to the developer’s Integrated Development Environment (IDE)) as
well as in the Independent Test and Evaluation (IT&E) activities is both valuable and useful.
Approaches that integrate such forms of continuous assessment into the developer’s activities
should be emphasized and encouraged.

Design Inspection

The establishment and update of secure design and code standards by the program should
address the potential types of attacks the system would face and draw upon DoD, Government,
Federally Funded Research and Development Centers (FFRDC), academia, commercial
websites, and industry sources for mitigation approaches and methods to address those that could
affect the system’s mission capabilities. The list of attack patterns captured in the Common
Attack Pattern Enumeration and Classification (CAPEC™) collection can be used to help

Development Process

Software Assurance Countermeasures in Program Protection Planning

7

consistently analyze a system for potential types of attacks the system may face. Lists such as
CAPEC can also bring consistency into the process of verifying that the design and coding
standards are being followed.

Code Inspection

Because of the subtle nature of most weaknesses in code that lead to unreliable, insecure, and
brittle applications that are easily influenced by attackers, it is important that code inspections
using appropriate tools be part of the approach used to minimize these weaknesses. The
Common Weakness Enumeration (CWE) catalog captures more than 700 types of weaknesses in
code, design, architecture, and implementation, but not all of them are equal threats to any
specific application or system. Programs may wish to draw upon secure design and coding
approaches defined on websites such as Top 10 Secure Coding Practices”1 and the Common
Weakness Enumeration (CWE)/ SysAdmin, Audit, Network, Security (SANS) Top 25 Most
Dangerous Software Errors2 to establish and update their secure design and coding standards.
As a minimum, the code inspection is used to inspect for conformance to the secure design and
coding standards established for the program.

An important part of the code inspection is to identify the subset of the overall CWE
collection to focus on initially. Alternate approaches to focusing in on a subset of the
weaknesses are described in the CWE and CAPEC sections that follow. These approaches can
be used independently or in combination if desired.

Because of the dynamic nature of the threat environment and information about how systems
can be compromised through software weaknesses, the program should have a methodology to
periodically update the secure design and coding standards so that reviews using the standards
address new types of attacks and types of weaknesses.

The next three sections of this document describe the middle three columns of the PPP
Software Assurance Table, which are meant to capture how the established vulnerability (CVE),
weakness (CWE), and attack pattern (CAPEC) collections are being used by the project team to
identify and mitigate the most dangerous types of vulnerabilities in the software. These columns
are further defined below.

Common Vulnerabilities and Exposures (CVE)

Common Vulnerabilities and Exposures (CVE) information is used to identify, track, and
coordinate mitigation activities of the publicly known vulnerabilities in commercial (COTS) and
open source software that are often used by malicious actors/agents to attack systems. Programs
that incorporate COTS software into their systems should perform regular searches of the CVE
lists before purchase and throughout the software lifecycle to understand vulnerabilities in those
COTS software components and assess potential threats to mission success.

1 https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+...
2 http://cwe.mitre.org/top25/index.html

Development Process

Software Assurance Countermeasures in Program Protection Planning

8

The CVE list is a compilation of publicly known information about security vulnerabilities
and exposures. The list is international in scope, free for public use, and referenced in most
commercial tools that scan operational systems and networks for vulnerabilities. The CVE list
can be used to identify publicly known software vulnerabilities that could:

• Allow an attacker to execute unauthorized code or commands;

• Allow an attacker to gain privileges or assume identities;

• Allow an attacker to access and/or manipulate data in a way that is contrary to the
specified access restrictions for that data;

• Bypass protection mechanisms;

• Allow an attacker to hide their activities; and

• Allow an attacker to conduct denial of service attacks.

CVE is intended for use by security experts, so it assumes a certain level of knowledge.
Programs should use a tool during incremental software testing of their commercial and open
source packages to scan operational components and match the results with the CVE dictionary.
Alternatively, a program can review the CVE list for any publicly known vulnerabilities for the
software packages being used by that program. A list of CVE-compatible tools is available at
http://cve.mitre.org/compatible/product.html.

The CVE column in the PPP Software Assurance Countermeasures table reports the planned
and actual (p/a) percentages of software components that incorporate COTS or open source that
have been analyzed and acceptably remediated against the CVEs from the CVE list that apply to
those COTS and open source packages.

Supportive analysis by the project team must record the CVEs found, the remediation
applied, and the residual risk to the mission of any unresolved CVEs. To identify which CVEs
should be included in the analysis, the list of CVEs for each COTS product and open source
should be tracked and those that were remediated documented as such. For each COTS and open
source package used as part of the system, the project staff should determine whether an explicit
vulnerability advisory/alert activity is provided/offered by the provider/developer of those
packages.

For those software developers that do not provide publicly available advisories/alerts about
security issues that need to be resolved, the project staff should carefully consider the risk they
are inheriting from that developer. Without CVE identifiers it is much harder to track and
manage the state of deployed software within the DoD’s vulnerability management practice and
the automation tooling deployed within the DoD. All developmental CPI software and
developmental critical-function software packages, whether COTS or open source, must be
evaluated using CVE, to reveal exposures inherited by incorporating open source or COTS
libraries or products.

Guidance on searching the CVE is located at http://cve.mitre.org/about/faqs.html#c. An
important aspect of applying CVE tools and reviews to a collection of COTS and open source is

Development Process

Software Assurance Countermeasures in Program Protection Planning

9

to apply the Common Vulnerability Scoring System (CVSS) to the determination of which CVEs
to mitigate first and to understand the severity of the remaining CVEs.

If the selected tool identifies any CVE with a CVSS score above medium (4), programs
should mitigate the vulnerability with highest priority first and then work through the next
highest priority issue until the residual risk represented by the remaining vulnerabilities is
acceptable to the mission owner. CVEs that are included in any DoD Information Assurance
Vulnerability Management (IAVM) alerts and advisories should be addressed in accordance with
the priorities and timeframe included in the IAVM from the Defense Information Systems
Agency (DISA).

The CVE website is at http://cve.mitre.org

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) is meant to be used for
the analysis of common patterns of attacks against systems, whether for understanding how
attacks are committed, scoping of relevant threats, templates for malicious testing, or as a foil for
thinking about the susceptibility of system’s architecture, design, and technical implementation
to specific attacks.

CAPEC is an international, free catalog of attack patterns outlining information such as a
comprehensive description of the phases and steps in attacks, the weaknesses they are effective
against (using CWEs), and a classification taxonomy that can be used for the analysis of
common attack patterns. CAPEC attack patterns cover a wide variety of families of attacks,
including: data leakage attacks, resource depletion attacks, injection attacks, spoofing attacks,
time and state attacks, abuse of functionality attacks, attacks using probabilistic techniques,
attacks exploiting authentication, attacks exploiting privilege/trust, attacks exploiting data
structure, resource manipulation attacks, network reconnaissance, social engineering attacks, and
some physical security attacks and supply chain attacks.

The attack patterns in CAPEC can be a powerful mechanism to capture and communicate the
attacker’s perspective, organize the analysis of a system with respect to attacks, and prioritize
weaknesses (CWEs) based on the anticipated attack patterns. They are descriptions of common
methods for exploiting software. Identified attack patterns may influence the selection of the
COTS and open source software products, programming languages, and design alternatives. By
understanding the attacker’s perspective and how a program’s software is likely to be attacked,
programs can directly consider these exploit attempt methods and mitigate them with design,
architecture, coding, and deployment choices that will lead to more secure software.

Programs should identify the set of attack patterns that pose the most significant risk and
should leverage them at each stage of the Software Development Lifecycle (SDLC). A
discussion of how to use CAPEC in this manner is available on the “Engineering for Attack”
page on the CWE site (http://cwe.mitre.org/community/swa/attacks.html). This is the same basic
methodology described in the new ISO/IEC Technical Report 20004, “Refining Software
Vulnerability Analysis under ISO/IEC 15408 and ISO/IEC 18045, which describes an alternate

Development Process

Software Assurance Countermeasures in Program Protection Planning

10

approach for doing a vulnerability analysis of a software-based system under the Common
Criteria regime. ISO/IEC 15408 and ISO/IEC 18045 are the two standards that guide and
describe the Common Criteria evaluation methodology.

The Engineering for Attack page describes how to use attack patterns to identify those
attacks and weaknesses that are of most concern. Such a list can drive better choices in design,
architecture, planned operational use, security policies, requirements, and generally thinking
through the risks related to the system’s intended use. This list can identify a manageable set of
relevant CWE weaknesses to avoid in design/coding and to inspect against during
implementation and verification. The list’s associated CAPECs can inform test and evaluation
by identifying high-priority test cases for risk-based security testing, penetration testing, and red
teaming.3

Supportive analysis by the project team should record

• the CAPECs identified as germane to the system,

• the CWEs identified as being susceptible to those CAPECs and

• the remediation applied along with

• an understanding of the residual risk to the mission of any CWEs that were not tested by
simulating CAPECs against the system.

To identify which CWEs should be included in the testing analysis, the list of CWEs should
be tracked and those that can be covered by the application of an available analysis tool/service
appropriately remediated. For each CWE not covered by an available static analysis tool/service,
the project staff should determine whether an appropriate CAPEC-inspired test case or Red
Team activity was conducted without finding an exploitable CWE.

For those CWEs that were not covered by static analysis or testing, the project staff should
carefully consider the risk to the mission from the potential of those weaknesses remaining in the
system.

The CAPEC website is http://capec.mitre.org. A description of the CAPEC schema is
located in the “Documentation” portion of the CAPEC Documents page at
http://capec.mitre.org/about/documents.html.

Common Weakness Enumeration (CWE)

The Common Weakness Enumeration (CWE) is international in scope and free for public
use. CWE provides a unified, measurable set of software weaknesses to enable more effective
discussion, description, selection, and use of software security tools and services to find

3 http://capec.mitre.org/documents/An_Introduction_to_Attack_Patterns_as_a_Software_Assurance_Knowledge_Resource.pdf

Development Process

Software Assurance Countermeasures in Program Protection Planning

11

weaknesses in source code and operational system components as well as to better understand
and manage software weaknesses related to architecture and design.

CWE is targeted to developers and security practitioners. Programs should use CWE-
compatible tools to scan software for CWE. A list of CWE-compatible products is available at
http://cwe.mitre.org/compatible/product.html.

The CWE column in the table reports the planned and actual percentages of developed
software components that have been evaluated utilizing the weaknesses from the CWE list to
identify the appropriate subset of CWEs, to consider alternate design and architectures or
alternate coding constructs.

The CWE/SANS Top 25 Most Dangerous Software Errors list on the CWE and SANS
websites provides detailed descriptions of the top 25 programming errors along with
authoritative guidance for mitigating and avoiding them.

The Common Weakness Risk Analysis Framework (CWRAF) methodology is described on
the CWE website and numerous examples are provided to help a project team learn how to apply
the methodology to their system in combination with the Common Weakness Scoring System
(CWSS).

By using the Common CWSS, a program also can reflect its specific list of dangerous CWEs
into its tools so the risk to the mission of the weaknesses found during static and dynamic
analysis or penetration testing reflects the relative importance of those impacts.

The CWE website is at http://cwe.mitre.org, and the CWSS web page is at
http://cwe.mitre.org/cwss/.

In addition, the project team should have a documented understanding of the residual risk to
the mission of any CWEs that were not the subject of review by static analysis tools/services or
tested by simulating the CAPECs that would be effective against those CWEs. For CWEs
deemed to be dangerous but not covered by a static analysis tool/service, the project staff should
determine whether an appropriate CAPEC-inspired test case or Red Team activity was conducted
without finding an exploitable CWE.

For those CWEs that were not covered by static analysis or testing, the project staff should
carefully consider the risk to the mission from the potential of those weaknesses remaining in the
system. Without demonstrable evidence that the CWEs that an attacker could exploit are
mitigated, there will always be some level of risk, but it is incumbent on the project staff to
document this residual risk for the end user so the user can manage that risk when the system is
deployed within the DoD. All developmental CPI software and developmental critical-function
software should be evaluated against the identified subset of the CWE list.

In addition to the above-listed MITRE websites, PMs should consider best practices
identified at http://www.safecode.org/index.php.

Development Process

Software Assurance Countermeasures in Program Protection Planning

12

Penetration Test

Programs should report what portion of the system will undergo penetration testing. The
purpose of penetration testing is to subject the system to an attack exercise to raise awareness of
exploitable vulnerabilities in the system and accelerate their remediation. Also the knowledge
that a system will undergo penetration testing increases the vigilance of the software engineers
responsible for architecting, designing, implementing, and fielding the systems.

The text should support the number with a brief explanation of the penetration testing
performed and a reference to any supporting reports generated by that testing.

The units used for planned/actual percentages for this metric are at the discretion of the
program. They should be explained in the text and should be meaningful and provide insight
into the completeness of the testing. For example, a network that exposes a certain number of
protocols may measure the percentages in the space of protocol states. A system with an
application programming interface (API) may measure the number of interface functions probed.

Test Coverage

Programs should report on their planned and actual test coverage. Units and metrics for test
coverage are at the discretion of the program but should be meaningful and yield insight into the
completeness of the testing regimen.

Possible measures for test coverage include percentage of statements exercised, percentages
of API calls and exception conditions exercised, or number of function points tested.

Software Assurance Countermeasures in Program Protection Planning

13

Operational System

This section refers to the software and firmware on the fielded system. Software assurance
countermeasures is a rapidly evolving area. Successful assessments, techniques, applications,
and example outcomes are frequently published in papers that can be found at DoD,
Government, FFRDC, and commercial websites. The FFRDC Carnegie Mellon Software
Engineering Institute (SEI) and MITRE both have searchable libraries containing information
about the approaches to Software Assurance indicated in the Program Protection Plan Outline
and Guidance, Table 5.3.3-1 Application of Software Assurance Countermeasures.

Failover Multiple Supplier Redundancy

Identical code for a failed function will most likely suffer the same failure as the original.
For redundancy in software, therefore, a completely separate implementation of the function is
needed. This independence reduces the probability that the failover code will be susceptible to
the same problem.

Fault Isolation

Software mechanisms that isolate faults include functions to trap, log, and otherwise protect
element failures from affecting other elements and the larger system. Logs help trace the sources
of operational faults. Logs also can be examined to help assess whether the fault is indicative of
a malicious attack.

Programs reporting a “Yes” in the table should be prepared to elaborate with technical detail
on how the fault isolation mechanisms were employed in the architecture and design for the
particular component or subsystem.

Least Privilege

The principle of least privilege dictates that one should limit the number, size, and privileges
of system elements. Least privilege includes separate user roles, authentication, and limited
access to enable all necessary functions but minimize adverse consequences of inappropriate
actions. Thus should a system element fall under the control of an attacker, the actions that
attacker can take may be constrained.

Programs reporting a “Yes” in the table should be prepared to elaborate with technical detail
on how least privilege principles were employed in the architecture and design for the particular
component or subsystem.

System Element Isolation

Software following the principle of system element isolation allows system element
functions to operate without interference from other elements. Such isolation limits the
cascading effect that could ensue due to compromise of a single element.

Operational System

Software Assurance Countermeasures in Program Protection Planning

14

Programs reporting a “Yes” in the table should be prepared to elaborate with technical detail
on how system element isolation principles were employed in the architecture and design for the
particular component or subsystem.

Input Checking/Validation

Input checking and validation should ensure that out-of-bounds values and out-of-sequence
operations are handled without causing failures and that the invalid input events are logged. This
checking may be applied to developmental software through coding guidelines and review. It
may also apply to COTS and Non-Developmental Item (NDI) software through constructs such
as wrappers and input filtering.

Programs reporting a “Yes” in the table should be prepared to elaborate on the architectural
and design criteria governing the extent of input checking/validation employed.

Software Load Key

Software load key refers to mechanisms by which executable software code is encrypted or
otherwise protected (e.g., cryptographic checksums, digital signatures, secure boot) from
corruption, between factory delivery and use in a military mission.

Programs reporting a “Yes” in the table should be prepared to elaborate on specific
techniques that are included in the architecture, design, and implementation of the software
component or subsystem to guarantee the integrity of the software image and detect any
unauthorized modification of the software once deployed.

Software Assurance Countermeasures in Program Protection Planning

15

Development Environment

Software tools used in the development environment (as opposed to the actual fielded
software) are another source of risk to warfighting capability and should be considered in the
PPP. In particular, an attacker could use a compromised development environment to insert
malicious code, exploitable vulnerabilities, and/or software backdoors into the operational
software before it is fielded.

Examples of software development tools include:

• Compilers, assemblers, pre-compilers, and other code-generating tools such as design
templates

• Structured code editors

• Code static analysis tools

• Debugging and timing analysis tools

• Code configuration management tools

• Accounts and access controls on development computers and networks

• Test management tools, test data generators, test harnesses, automated regression testing
tools

Examples of compromising tools to achieve malicious insertion include

• Modify compiler to generate or insert additional functionality into the operational code

• Modify a math library of routines with malware that then will be incorporated into the
operational code.

Programs should tailor the list contents of the SW Product column in this section of the table
to enumerate the software tools pertinent to the program’s development environment(s). For each
SW product listed, table entries should address the items enumerated in the following columns.

Source Code Availability

When source code is available, it becomes easier to answer some questions about the
behavior of the tool and to detect potential compromise.

Is source code available for the tool? A yes or no response in this column may suffice. If
further information (e.g., coding language, code size, licensing cost constraints) would provide
useful insight, annotate the entry with a note.

Release Testing

Software tools are often updated. These updates are a potential path for an attacker to
compromise the development environment and thus the operational software.

Development Environment

Software Assurance Countermeasures in Program Protection Planning

16

Indicate whether testing for indications of malicious insertion or tool compromise are
performed on each update of the tool before that update is incorporated into the development
environment.

Generated Code Inspection

Indicate whether/how any generated code for the system is examined for malicious code or
exploitable vulnerability potentially inserted by the software tool in question.

In general, the problem of how to effectively inspect generated code for malicious insertion
remains an open area of research. From the practical standpoint, it is better to perform some
inspection than to ignore the problem entirely. That inspection at least raises the bar for what an
attacker needs to do to compromise the system undetected.

Potential code inspection countermeasures include:

• Manual inspection of a representative sample of the generated code

• Analysis of the code with reverse engineering tools

• Identification of the libraries compiled into an executable

• Comparison to baselines generated by previous versions of the tool

• Manual inspection of tool outputs against a known/analyzable test corpus

• Advanced/experimental techniques such as automated function extraction

Note that in many instances simple checks can be effective in detecting some injected
malware. For example: extracting, comparing, and sorting strings might point to a trigger string
used to open a backdoor. Decompiling an executable may reveal the presence of operation codes
not normally generated by the compiler.

Where generated code inspection is deemed of benefit, programs should tailor the inspection
to the unique aspects of the program and report planned and actual percentages appropriately.

Additional Countermeasures

Programs should consider adding columns to this area of the software assurance table with
the rationale for the additions if programs judge them to significantly reduce the risk of
malicious insertion. Additional countermeasures may include:

• Access controls and other controls detect malicious behavior or suspicious artifacts in the
development environment.

• Information assurance controls to safeguard technical data in the development
environment (networks, computers, test equipment, and configuration systems).

• Controlling and accounting for printing of technical manuals and other documentation.

Software Assurance Countermeasures in Program Protection Planning

17

Acronyms

API application programming interface
CAPEC Common Attack Pattern Enumeration and Classification
CF Critical Function
CIO Chief Information Officer
COTS commercial off-the-shelf
CPI critical program information
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
CWE Common Weakness Enumeration
CWSS Common Weakness Scoring System
DAG Defense Acquisition Guidebook
DASD(SE) Deputy Assistant Secretary of Defense for Systems Engineering
DISA Defense Information Systems Agency
DoD Department of Defense
FFRDC Federally Funded Research and Development Center
GOTS Government off-the-shelf
IAVM Information Assurance Vulnerability Management
IDE Integrated Development Environment
IPT Integrated Product Team
IT&E Independent Test and Evaluation
NDI Non-Developmental Item
p/a planned/actual
pen test penetration test
PM program manager
PPP Program Protection Plan
RFP request for proposal
SANS SysAdmin, Audit, Network, Security
SDLC Software Development Lifecycle
SEI Software Engineering Institute
SETR Systems Engineering Technical Review
SW software
SwA software assurance
UNK unknown

Software Assurance Countermeasures in Program Protection Planning

18

References

Defense Acquisition Guidebook. Washington, D.C.: Under Secretary of Defense for

Acquisition, Technology, and Logistics. https://dag.dau.mil/.

Department of Defense Instruction (DoDI) Interim 5000.02. 2013. “Operation of the Defense

Acquisition System.” Under Secretary of Defense for Acquisition, Technology, and
Logistics (November 25). http://www.dtic.mil/whs/directives/corres/pdf/500002_interim.pdf

Program Protection Plan Outline and Guidance, Version 1.0. 2011. Washington, D.C.: Deputy

Assistant Secretary of Defense for Systems Engineering.
http://www.acq.osd.mil/se/docs/PPP-Outline-and-Guidance-v1-July2011.pdf

	Software Assurance Countermeasures in Program Protection Planning
	Contents
	Introduction
	Development Process
	Static Analysis
	Design Inspection
	Code Inspection
	Common Vulnerabilities and Exposures (CVE)
	Common Attack Pattern Enumeration and Classification (CAPEC)
	Common Weakness Enumeration (CWE)
	Penetration Test
	Test Coverage

	Operational System
	Failover Multiple Supplier Redundancy
	Fault Isolation
	Least Privilege
	System Element Isolation
	Input Checking/Validation
	Software Load Key

	Development Environment
	Source Code Availability
	Release Testing
	Generated Code Inspection
	Additional Countermeasures

	Acronyms
	References

